79 research outputs found

    Leaf Radiative Properties and the Leaf Energy Budget

    Get PDF
    Leaf radiative properties are the physical properties of leaves that characterize radiant energy exchange with their surroundings. Radiant energy exchange is an important consideration in studies of plant function since, for example, absorption of photosynthetically active radiation (PAR) leads to the transformation of this energy into chemical energy via photosynthesis. Thus, plant productivity, and hence, agricultural production, ultimately depend on leaf radiative properties. Leaf temperature is an additional, very important, parameter in intimate association with leaf radiant energy exchange. This association occurs since energy gained via radiation must be in balance with energy lost through various processes and energy loss from the leaf is predicated on leaf temperature. Leaf temperature is a critical factor determining leaf transpiration (hence, crop water use), reaction rates of biochemical processes (hence, photosynthetic rates, respiration rates, growth rates and productivity), and many other aspects of plant function. Thus, leaf radiative properties not only affect leaf radiant energy exchange but are implicit in determining rates of plant C uptake and water loss. This chapter will begin with an overview of leaf radiative properties. Next will follow a description of the significance of leaf radiative properties in determining the leaf energy budget. Leaf temperature will be discussed as the key component in characterizing energy interactions with leaves and their environments and a practical technique for determining the leaf temperature from the leaf energy budget will be presented. Finally, the importance of leaf conductances in the solution of the leaf energy budget will be stressed. Although much of the research cited will be focused on species of agronomic importance the general discussion is appropriate for foliage elements of any plant species

    Assessment of Canopy Chlorophyll Content Retrieval in Maize and Soybean: Implications of Hysteresis on the Development of Generic Algorithms

    Get PDF
    Canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in three irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2

    Annual, seasonal, and diel surface energy partitioning in the semiarid Sand Hills of Nebraska, USA

    Get PDF
    Study Region: The Nebraska Sand Hills consisting of four major land cover types: (1) lakes and wetlands (∼5% for both), (2) subirrigated meadows (∼10%), (3) dry valleys (∼20%), and (4) upland dunes (∼65%). Study Focus: Examination of surface energy and water balances on multiple temporal scales with primary focus on latent heat flux (λE), and evapotranspiration (ET), to gain a better understanding of the annual, seasonal, and diel properties of surface energy partitioning among different Sand Hills ecosystems to improve regional water resource management. New Hydrological Insights for the Region: Based on surface energy and water balance measurements using Bowen ratio energy balance systems at three locations during 2004, we find a strong spatial gradient between sites in latent (λE) and sensible (H) heat flux due to differences in topography, soils, and plant community composition on all timescales. Seasonally, all land covers show the greatest λE in summer. Our results show that subirrigated meadows, dry valleys, and upland dunes allocate roughly 81%, 50%, and 41% of available energy to λE, respectively, during the growing season. The subirrigated meadow was the only cover type where cumulative annual ET surpassed cumulative annual precipitation (i.e. net loss of water to the atmosphere). Therefore, the dry valleys and upland dunes are where net groundwater recharge to the High Plains Aquifer is occurring

    Informative spectral bands for remote green LAI estimation in C3 and C4 crops

    Get PDF
    Green leaf area index (LAI) provides insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast and nondestructive estimation of green LAI. A number of methods have been used for the estimation of green LAI; however, the specific spectral bands employed varied widely among the methods and data used. Our objectives were (i) to find informative spectral bands retained in three types of methods, neural network (NN), partial least squares (PLS) regression and vegetation indices (VI), for estimating green LAI in maize (a C4 species) and soybean (a C3 species); (ii) to assess the accuracy of the algorithms estimating green LAI using a minimal number of bands for each crop and generic algorithms for the two crops combined. Hyperspectral reflectance and green LAI of irrigated and rainfed maize and soybean were taken during eight years of observations (altogether 24 field-years) in very different weather conditions. The bands retained in the best NN, PLS and VI methods were in close agreement. The validity of these bands was further confirmed via the uninformative variable elimination PLS technique. The red edge and the NIR bands were selected in all models and were found the most informative. Identifying informative spectral bands across all four techniques provided insight into spectral features of reflectance specific for each species as well as those that are common to species with different leaf structures, canopy architectures and photosynthetic pathways. The analyses allowed development of algorithms for estimating green LAI in soybean and maize with no re-parameterization. These findings lay a strong foundation for the development of generic algorithms which is crucial for remote sensing of vegetation biophysical parameters

    Toward Generic Models for Green LAI Estimation in Maize and Soybean: Satellite Observations

    Get PDF
    Informative spectral bands for green leaf area index (LAI) estimation in two crops were identified and generic models for soybean and maize were developed and validated using spectral data taken at close range. The objective of this paper was to test developed models using Aqua and Terra MODIS, Landsat TM and ETM+, ENVISAT MERIS surface reflectance products, and simulated data of the recently-launched Sentinel 2 MSI and Sentinel 3 OLCI. Special emphasis was placed on testing generic models which require no re-parameterization for these species. Four techniques were investigated: support vector machines (SVM), neural network (NN), multiple linear regression (MLR), and vegetation indices (VI). For each technique two types of models were tested based on (a) reflectance data, taken at close range and resampled to simulate spectral bands of satellite sensors; and (b) surface reflectance satellite products. Both types of models were validated using MODIS, TM/ETM+, and MERIS data. MERIS was used as a prototype of OLCI Sentinel-3 data which allowed for assessment of the anticipated accuracy of OLCI. All models tested provided a robust and consistent selection of spectral bands related to green LAI in crops representing a wide range of biochemical and structural traits. The MERIS observations had the lowest errors (around 11%) compared to the remaining satellites with observational data. Sentinel 2 MSI and OLCI Sentinel 3 estimates, based on simulated data, had errors below 8%. However the accuracy of these models with actual MSI and OLCI surface reflectance products remains to be determined

    Remote estimation of leaf area index and green leaf biomass in maize canopies

    Get PDF
    Leaf area index (LAI) is an important variable for climate modeling, estimates of primary production, agricultural yield forecasting, and many other diverse studies. Remote sensing provides a considerable potential for estimating LAI at local to regional and global scales. Several spectral vegetation indices have been proposed, but their capacity to estimate LAI is highly reduced at moderate-to- high LAI. In this paper, we propose a technique to estimate LAI and green leaf biomass remotely using reflectances in two spectral channels either in the green around 550 nm, or at the red edge near 700 nm, and in the NIR (beyond 750 nm). The technique was tested in agricultural fields under a maize canopy, and proved suitable for accurate estimation of LAI ranging from 0 to more than 6

    Scaling up of CO\u3csub\u3e2\u3c/sub\u3e fluxes from leaf to canopy in maize-based agroecosystems

    Get PDF
    Carbon dioxide fluxes are being measured in three maize-based agroecosystems in eastern Nebraska in an effort to better understand the potential for these systems to sequester carbon in the soil. Landscape-level fluxes of carbon, water and energy were measured using tower eddy covariance systems. In order to better understand the landscape-level results, measurements at smaller scales, using techniques promoted by John Norman, were made and scaled up to the landscape-level. Single leaf gas exchange properties (CO2 assimilation rate and stomatal conductance) and optical properties, direct and diffuse radiation incident on the canopy, and photosynthetically active radiation (PAR) reflected and transmitted by the canopy were measured at regular intervals throughout the growing season. In addition, soil surface CO2 fluxes were measured using chamber techniques. From leaf measurements, the responses of net CO2 assimilation rate to relevant biophysical controlling factors were quantified. Single leaf gas exchange data were scaled up to the canopy level using a simple radiative model that considers direct beam and diffuse PAR penetration into the canopy. Canopy level photosynthesis was estimated, coupled with the soil surface CO2 fluxes, and compared to measured net ecosystem CO2 exchange (NEE) values from the eddy covariance approach. Estimated values of canopy level absorbed PAR was also compared to measured values. The agreement between estimated and observed values increases our confidence in the measured carbon pools and fluxes in these agroecosystems and enhances our understanding of biophysical controls on carbon sequestration

    Remote estimation of leaf area index and green leaf biomass in maize canopies

    Get PDF
    Leaf area index (LAI) is an important variable for climate modeling, estimates of primary production, agricultural yield forecasting, and many other diverse studies. Remote sensing provides a considerable potential for estimating LAI at local to regional and global scales. Several spectral vegetation indices have been proposed, but their capacity to estimate LAI is highly reduced at moderate-to- high LAI. In this paper, we propose a technique to estimate LAI and green leaf biomass remotely using reflectances in two spectral channels either in the green around 550 nm, or at the red edge near 700 nm, and in the NIR (beyond 750 nm). The technique was tested in agricultural fields under a maize canopy, and proved suitable for accurate estimation of LAI ranging from 0 to more than 6

    Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites

    Get PDF
    Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use

    Changes In Nitrogen Use Efficiency And Soil Quality After Five Years Of Managing For High Yield Corn And Soybean

    Get PDF
    Average corn grain yields in the USA have increased linearly at a rate of 1.7 bu/acre over the past 35 years with a national yield average of 140 bu/acre. Corn yield contest winners and simulation models, however, indicate there is ~100 bu/a in exploitable corn yield gap. Four years (1999-2002) of plant development, grain yield and nutrient uptake were compared in intensive irrigated maize systems representing (a) recommended best management practices for a yield goal of 200 bu/acre (M1) and (b) intensive management aiming at a yield goal of 300 bu/acre (M2). For each management level, three levels of plant density (30000-P1, 37000-P2 and 44000-P3 seed/acre) were compared in a continuous corn and corn- soybean rotation. Over five years, the grain yields increased 11% as a function of management and this effect was manifest under higher plant densities. A high yield of 285 bu/acre was achieved at the M2, P2 treatment in 2003. Higher population resulted in greater demand for N and K per unit grain yield. Over the past five years, nitrogen use efficiency has steadily improved in the M2 treatment due to improvements in soil quality. Intensive management and population levels significantly increased residue carbon inputs with disproportionately lower soil respiration. Closing the yield gap requires higher plant population and improved nutrient management to maintain efficient and profitable improvement in maize production. Soil quality improvements and higher residue inputs under intensive management should make this task easier with time
    • …
    corecore